OCCASIONAL REVIEW Respiratory muscle fibres: specialisation and plasticity
نویسندگان
چکیده
Skeletal muscles are composed of fibres of different types, each type being identified by the isoform of myosin heavy chain which is expressed as slow 1, fast 2A, fast 2X, and fast 2B. Slow fibres are resistant to fatigue due to their highly oxidative metabolism whereas 2X and 2B fibres are easily fatiguable and fast 2A fibres exhibit intermediate fatigue resistance. Slow fibres and fast fibres are present in equal proportions in the adult human diaphragm while intercostal muscles contain a higher proportion of fast fibres. A small fibre size, abundance of capillaries, and a high aerobic oxidative enzyme activity are typical features of diaphragm fibres and give them the resistance to fatigue required by their continuous activity. Because of their fibre composition, intercostal muscles are less resistant to fatigue. The structural and functional characteristics of respiratory muscle fibres are not fixed, however, and can be modified in response to several physiological and pathological conditions such as training (adaptation to changes in respiratory load), adaptation to hypoxia, age related changes, and changes associated with respiratory diseases. The properties of respiratory muscle fibres can also be modified by pharmacological agents such as b2 agonists and corticosteroids used for the treatment of respiratory diseases.
منابع مشابه
Chronic hypoxia increases rat diaphragm muscle endurance and sodium-potassium ATPase pump content.
The effects of chronic hypoxia (CH) on respiratory muscle are poorly understood. The aim of the present study was to examine the effects of CH on respiratory muscle structure and function, and to determine whether nitric oxide is implicated in respiratory muscle adaptation to CH. Male Wistar rats were exposed to CH for 1-6 weeks. Sternohyoid and diaphragm muscle contractile properties, muscle f...
متن کاملمعرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات
Background and aims Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal muscle has been known and well documented. As the nature of the signal has been progressively revealed, the term of mec...
متن کاملNeuroplasticity and neuromotor synergies in context of rehabilitation after stroke: a systematic review
Background: Alterations of neuroplasticity and cortical excitability are important pathophysiological factors in stroke. Modulation of the neuroplasticity has been proposed as an underlying mechanism of recovery in different neurological disorders. But it is not still clear how the CNS faces the complexity of muscle control. Neuroplastic processes may be used for the functional improvement of s...
متن کاملMitochondrial and inflammatory changes in sporadic inclusion body myositis
AIMS Sporadic inclusion body myositis (sIBM) is the most common late onset muscle disease causing progressive weakness. In light of the lack of effective treatment, we investigated potential causes underlying muscle wasting. We hypothesized that accumulation of mitochondrial respiratory deficiency in muscle fibres may lead to fibre atrophy and degeneration, contributing to muscle mass reduction...
متن کاملNeuropeptide tyrosine (NPY): a newly discovered peptide is present in the mammalian respiratory tract.
Neuropeptide tyrosine (NPY), a newly discovered peptide known to modulate blood vessel diameter and smooth muscle tone, has been found in many mammalian organs. Its distribution is similar to that of sympathetic nerve fibres and NPY immunoreactivity has been found in noradrenergic ganglion cells. In a study of the respiratory tract of four mammalian species--man, cat, guinea pig, and rat--NPY i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004